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Abstract

One of the main practical problems on cooperative robots is the complexity of inte-
grating a large amount of expensive velocity-force sensors. In this paper, the control
of cooperative robots using only joint measurements is considered to manipulate an
object firmly. Experimental results are shown to support the developed theory.
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1 INTRODUCTION

In cooperation control the tasks characterized by
physical contact between the end effector and a
constraint surface are particularly interesting. A
long list of such tasks can be given: scribing, writ-
ing, deburring, grinding, etc. To control two or
more cooperative robots, there have been pro-
posed mainly three kinds of approaches: master-
slave model, centralized controller and decentral-
ized architecture controller. In the decentralized
architecture there is no need to handle high-
dimensional matrices. Furthermore, the control
laws for all the robots are the same, so its imple-
mentation is straightforward. For example, Liu
et al. (1997) proposed a model-based adaptive
control for cooperation of robots.

Recently, there has been a considerable the
development of nonlinear controllers for robot

1 This work is based on research supported by
the DGAPA–UNAM under grants IN119003
and IX116804 and by the CONACYT.

manipulators focused on reducing the number of
sensors required to implement the control algo-
rithm. However, the literature available on co-
operative robots not requiring link velocity and
end-effector force measurements is very limited.
In Huang and Tzeng (1991), two types of force
observers are designed for constrained robot sys-
tems. In de Queiroz et al. (1997), an adaptive ap-
proach is proposed, which does not require veloc-
ity measurements. This approach, however, has
the disadvantage that a transformation has to
be accomplished on line. Liu and Arimoto (1996)
proposed a simple controller without force feed-
back by using the joint-space orthogonalization
scheme, which decouples position and force sig-
nals in the joint spaces. However, their approach
still needs velocity measurement and no experi-
mental results are presented.

In this paper, their method is used to de-
sign a decentralized position-force tracking con-
troller for cooperative robot systems which does
not require link velocities measurements nor end–
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effector contact forces. The approach is based
on that presented in Gudiño Lau et al. (2004).
However, two important improvements over the
original algorithm are introduced: the observer
is much simpler and, just as mentioned, no force
measurements are required.

The paper is organized as follows. In Sec-
tion 2, the system model and its properties are
presented. Section 3 describes the proposed con-
trol and observer laws, while Section 4 shows ex-
perimental results. Finally, Section 5 gives some
conclusions.

2 SYSTEM MODEL AND PROPER-
TIES

Consider a cooperative system with l–fingers,
each of them with ni degrees of freedom and mi

constraints arising from the contact with a held
object. Then, the total number of degrees of free-

dom is given by n =
l∑

i=1
ni with a total number of

m =
l∑

i=1
mi constraints, where ni > mi. The dy-

namics of the i–th finger is given by (Parra-Vega
et al. 2001)

τ i + JT
ϕi

(qi)λi = H i(qi)q̈i + Ci(qi, q̇i)q̇i (1)
+ Diq̇i + gi(qi)

where qi ∈ Rni is the vector of general-
ized joint coordinates, H i(qi) ∈ Rni×ni is
the symmetric positive definite inertia matrix,
Ci(qi, q̇i)q̇i ∈ Rni is the vector of Coriolis and
centrifugal torques, gi(qi) ∈ Rni is the vector of
gravitational torques, Di ∈ Rni×ni is the posi-
tive semidefinite diagonal matrix accounting for
joint viscous friction coefficients, τ i ∈ Rni is
the vector of torques acting at the joints, and
λi ∈ Rmi is the vector of Lagrange multipliers
(physically represents the force applied at the
contact point). Jϕi(qi) = ∇ϕi(qi) ∈ Rmi×ni is
assumed to be full rank in this paper. ∇ϕi(qi)
denotes the gradient (or the Jacobian matrix) of
the object surface vector ϕi ∈ Rmi which maps
a vector onto the normal plane at the tangent
plane that arises at the contact point described
by

ϕi(qi) = 0. (2)

Note that equation (2) means that homogeneous
constraints are being considered (Parra-Vega et
al. 2001). The complete system is subjected to m
holonomic constraints given by

ϕ(q) = 0, (3)

where ϕ(q) = ϕ(q1, . . . , ql) ∈ Rm. This means
that the object being manipulated and the envi-
ronment are modeled by the constraint (3).

Let us denote the largest (smallest) eigen-
value of a matrix by λmax(·) (λmin(·)). By re-
calling that revolute joints are considered, some
properties can be established (Gudiño Lau et
al. 2004); since most of them are well known,
here we present only the following.

Property 5 The vector q̇i can be written as

q̇i
4
= Qi(qi)q̇i + J+

ϕi
(qi)ṗi,

where J+
ϕi

= JT
ϕi

(
JϕiJ

T
ϕi

)−1 ∈ Rni×mi stands
for the Penrose’s pseudoinverse and Qi ∈ Rni×ni

satisfies rank(Qi) = ni−mi. These two matrices
are orthogonal, i.e. QiJ

+
ϕi

= O (and QiJ
T
ϕi

=

O). ṗi
4
= Jϕi q̇i ∈ Rmi is the so called constrained

velocity. Since homogeneous constraints are being
considered, it also holds in view of (2) that

ṗi = 0 and pi = 0, (4)

for i = 1, . . . , l. pi is called the constrained posi-
tion. 4

To be able to design the control–observer
scheme, the following assumptions are made.

Assumption 1 The l robots of which the sys-
tem is made up satisfy constraints (2) and (4)
for all time. Furthermore, none of the robots is
redundant nor it is in a singularity. 4

Assumption 2 The matrix Jϕi is Lipschitz con-
tinuous, i. e. ‖Jϕi(qi)−Jϕi(qdi)‖ ≤ Li‖qi−qdi‖,
for a positive constant Li and for all qi, qdi ∈
Rni. Besides, there exist positive finite constants
c0i and c1i which satisfies

c0i
4
= max
∀qi∈Rni

‖J+
ϕi

(qi)‖ (5)

c1i
4
= max
∀qi∈Rni

‖Jϕi(qi)‖. (6)

2
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3 CONTROL WITH VELOCITY ES-
TIMATION

Control Law

Consider model (1) and define the tracking and

observation errors as q̃i
4
= qi−qdi and zi

4
= qi−

q̂i, where qdi is a desired smooth bounded trajec-
tory satisfying constraint (2), and (̂·) represents
the estimated value of (·). Other error definitions

are ∆pi
4
= pi − pdi and ∆λi

4= λi − λdi, where
pdi is the desired constrained position which sat-
isfies (4). λdi is the desired force to be applied
by each finger on the constrained surface. Also

q̇ri
4
= Qi(qi) (q̇di −Λi (q̂i − qdi)) (7)
+ J+

ϕi
(qi) (ṗdi − βi∆pi)

si
4
= q̇i − q̇ri

4
= spi + sfi (8)

where Λi = kiI ∈ Rni×ni with ki > 0, is a diag-
onal positive definite matrix, and βi is a positive
constant. Note also that spi and sfi are orthog-
onal vectors. We propose the following substitu-
tion for q̈ri

¨̂qri
4
= Qi(qi)

(
q̈di −Λi

(
˙̂qi − q̇di

))
(9)

+ J+
ϕi

(qi) (p̈di − βi (ṗi − ṗdi))

+ ˙̂
Qi(q̇oi) (q̇di −Λi (q̂i − qdi))

+ ˙̂
J

+

ϕi
(q̇oi) (ṗdi − βi∆pi) ,

where ˙̂
J

+

ϕi
(q̇oi),

˙̂
Qi(q̇oi) are defined in Gudiño

Lau et al. (2004) and q̇oi
4
= ˙̂qi − Λizi, ri

4
=

q̇i − q̇oi = żi + Λizi. Note that ṗi is still used
since this value is known from (4). After some
manipulation, it is possible to get

¨̂qri = q̈ri + ei(ri), (10)

where

ei(ri)
4
=− ˙̄Qi(ri) (q̇di −Λiq̃i + Λizi) (11)

− ˙̄J
+

ϕi
(ri) (ṗdi − βi∆pi) .

The proposed controller is then given for each
single input by

τ i
4
= H i(qi)¨̂qri + Ci(qi, q̇ri)q̇ri

+ Diq̇ri
+ gi(qi) (12)

−KRi (q̇oi − q̇ri)− JT
ϕi

(qi)λdi,

where KRi ∈ Rni×ni is a diagonal positive def-
inite matrix. By substituting (12) into (1), the
closed loop dynamics becomes after many ma-
nipulation

H i(qi)ṡi =−Ci(qi, q̇i)si −KDRisi (13)

+ KRiri + JT
ϕi

(qi)∆λi

−Ci(qi, q̇ri)si + H i(qi)ei(ri)

where KDRi

4
= KRi + Di. In order to get (13),

Property 3 of Gudiño Lau et al. (2004) has been
used.

Observer definition

The proposed dynamics of the observer is given
by

˙̂qi = ˙̂qoi + Λizi + kdizi (14)
¨̂qoi = ¨̂qri + kdiΛizi, (15)

where kdi is a positive constant. Since from (14)
you have ¨̂qoi = ¨̂qi − Λiżi − kdiżi, (15) becomes
ṡi = ṙi +kdiri +ei(ri), in view of (10). By multi-
plying both sides of ṡi by H i(qi), and by taking
into account (13), one gets

H i(qi)ṙi =−Ci(qi, q̇i)ri −Hrdiri (16)
+ Ci(qi, si + q̇ri)ri

−Ci(qi, si + 2q̇ri)si

−KDRisi + JT
ϕi

(qi)∆λi.

where Hrdi

4
= kdiH i(qi)−KRi , after some more

manipulation now, let us define

xi
4
= [ sT

i rT
i ]T , (17)

as state for (13) and (16). The main idea of the
control–observer design is to show that whenever
‖xi‖ tends to zero, the tracking errors q̃i, ˙̃qi, ∆pi,
∆ṗi and ∆λi and the observation errors zi and żi

will do it as well. The following lemma shows that
this is indeed the case under some conditions.
Lemma 1 If xi is bounded by xmaxi and tends
to zero, then the following facts hold:

a) ∆pi and ∆ṗi remain bounded and tend to zero.

3

395



ISBN: 970-32-2137-8

      CONGRESO ANUAL DE LA AMCA 2004

b) q̃i and ˙̃qi remain bounded. Furthermore, if the
bound xmaxi for ‖xi‖ is chosen small enough
so as to guarantee that ‖q̃i‖ ≤ ηi for all t, with
ηi a positive and small enough constant, then
both q̃i and ˙̃qi will tend to zero as well.

c) If, in addition, the velocity vector q̇i is bounded,
then ∆λi will remain bounded and tend to
zero. 4

The proof of Lemma 1 can be found in Ap-
pendix A. It is interesting to note that, if ‖xi‖ is
bounded by xmaxi , then it is always possible to
find a bound for ei(ri) in (11) so that

‖ei(ri)‖ ≤ Mei(xmaxi)‖ri‖ < ∞. (18)

Consider now the following function

Vi(xi) =
1
2
xT

i M ixi, (19)

where M i
4
= block diag {H i(qi), H i(qi }. The

following theorem establishes the conditions for
the controller–observer parameters to guarantee
asymptotic stability.

Theorem 1 Consider the cooperative system
dynamics given by (1), (2) and (4), in closed loop,
with the control law (12) and the observer (14)–
(15), where qdi and pdi are the desired bounded
joint and constrained positions, whose derivatives
q̇di, q̈di, ṗdi, and p̈di are also bounded, and they
all satisfy constraint (4). Consider also l given
domains Di ∈ Rni

Di = {xi : ‖xi‖ ≤ xmaxi} , (20)

for i = 1, . . . , l, with xmaxi small enough and

xmaxi ≤
ηiαi(

1 +
√

ni
) (21)

with αi
4= ki−|ki − βi|−γi, ki and βi given in (7)

and γi
4
= c0iLi (vmi + βiηi), with c0i and Li given

in (assumption 2)-(5) and ‖q̇di‖ ≤ vmi ∀ t. Then,
every dynamic and error signal remains bounded
and asymptotic stability of tracking, observation
and force errors arise, i. e.

lim
t→∞ q̃i = 0 lim

t→∞
˙̃qi = 0 lim

t→∞zi = 0 (22)

lim
t→∞ żi = 0 lim

t→∞∆λi = 0, (23)

if the following conditions are satisfied

λmin(KRi)≥ µ1i + 1 + δi (24)

kdi≥ λmax(KRi) + ωi

λhi
(25)

where ωi = µ2i+γ2i+ 1
4 (λDi + µ3i + µ4i + γ1i)

2+
δi, with δi a positive constant and µ1i, µ2i, µ3i,
µ4i, γ1i, γ2i and λDi defined in Appendix B. 4

The proof of the Theorem 1 can be found in
Appendix B.

4 EXPERIMENTAL RESULTS

A test bed with two industrial robots is used.
The robots are at the Laboratory for Robotics of
the National University of Mexico. They are the
A465 and A255 of CRS Robotics. Only the first
three joints of each robot are used for the exper-
iments. To implement control law (12), the mo-
tors dynamics has to be taken into account. Both
robots own force sensors, so that one can ver-
ify whether the desired forces are being matched.
The palm frame of the whole system is at the
base of the robot A465, with its x–axis point-
ing towards the other manipulator. If the task
consists in lifting the object and pushing with a
desired force, then the constraints in Cartesian
coordinates are simply given by

ϕi = xi − bi = 0, (26)

for i = 1, 2 and bi a positive constant. The desired
trajectories are given by

xd1 = 0.5530[m] xd2 = 0.8522[m] (27)
yd1,2 = 0.0095 sin(ω(t− ti))[m] (28)
zd1,2 = (0.635 + 0.0095 cos(ω(t− ti)) (29)

− 0.0095)[m].

These trajectories are valid from an initial time
ti to a final time tf , while ω is designed to satisfy
ω(ti) = ω(tf) = 0. The derivatives of ω are zero as
well at ti and tf . For the experiments it has been
set ti = 20s and tf = 70s. By choosing (27)–(28),
the robots will make a circle each second in the
y–z plane. The desired pushing force is given by

4
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fdx1,2 =





3.0(t− 15) [N] 15 ≤ t < 25

30 + 10 sin(6π(t

−25)/40) [N] 25 ≤ t ≤ 65

30− 3.0(t− 65) [N] 65 < t ≤ 75

(30)

and fdy1,2 = fdz1,2 = 0[N]. The different control
and observer parameters are Λ1 = 21I, Λ2 =
20I, KR1 = 80I, KR2 = diag{ 40 20 40 },
kd1 = kd2 = 12.

The observer–controller scheme has been pro-
grammed in a PC computer, while the sampling
time is h = 9ms. The experiment lasts 90s. The
object is held at t = 15s. Before, the robots are
in free movement and the control law (12) is used
with the force part set to zero (i. e. Qi = I and
Jϕi = O). From t = 15s to t = 20s the object is
lifted to the initial position to make the circles,
while the desired pushing forces keep increasing.
From t = ti = 20s to t = tf = 70s the robots are
making the circles and the desired forces are si-
nus signals from t = 25s to t = 65s. From t = 70s
to t = 75s the object is put down and the desired
forces diminish to zero. Finally, from t = 75s to
t = 90s the manipulators go back to their ini-
tial positions. The results for the tracking errors
can be seen in Figure 1 in Cartesian coordi-
nates. It can be appreciated that they are larger
during the constrained motion. For the desired
forces (30) the results can be considered good,
although the main force in the x direction shows
some noise around the desired trajectory (see
Figure 2). Figure 3 shows the observation errors.
As can be appreciated, they are pretty good.

5 CONCLUSIONS

The position and force tracking control prob-
lem of cooperative robots with end effectors
constrained on geometric surfaces and without
velocity-force measurements is considered in this
paper by using the joint-space orthogonaliza-
tion scheme. The control law is a decentralized
approach which takes into account motion con-
straints rather than the held object dynamics. By
assuming that fingers dynamics are well known,
the crucial point of this work is to show that
our controller does not need any velocity-force
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Fig. 1: Tracking errors in Cartesian coordinates.

a) x̃1. b) ỹ1. c) z̃1. d) x̃2. e) ỹ2. f) z̃2.
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Fig. 2: Force measurements of robots A465
and A255. a) Fx1 . b) Fy1 . c) Fz1 . a) Fx2 .
b) Fy2 . c) Fz2 . —– measured. - - - de-
sired.

feedback. A linear observer for each finger is
proposed to estimate joint velocities which does
not require any knowledge of the robots dynam-
ics. Regarding the force control, our scheme only
uses a feedforward of the desired force. Despite
the fact that the stability analysis is complex,
the controller and specially the observer are not.
Experimental results have been carried out to
test the proposed approach. Since both robots
own force sensors, it was possible to check out
that there was a good matching of real and de-
sired forces. Also, the overall outcomes can be

5
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Fig. 3: Observation errors. a) z11. b) z12. c)
z13. d) z21. e) z22. f) z23.

considered good as well.

A Proof of Lemma 1

In this appendix, item c) of Lemma 1 is proven.
For a proof of items a) and b) see Gudiño Lau
et al. (2004). Note that one only has to set
xT

i = [ sT
i rT

i ]T and ξi = O, where ξi is the
gain for the force feedback ∆F i, which is not
used here.

c) When ‖xi‖ is bounded and tends to zero,
∆λi does not necessarily do it nor remains
bounded. In order to prove that, one may
use the fact that Jϕi(qi)si = ∆ṗi + βi∆pi =
0. The last equality is valid since con-
straint (4) must be satisfied. Thus you have
Jϕi(qi)ṡi + J̇ϕi(qi)si = 0, and from (13) one
gets

∆λi =−
(
Jϕi(qi)H

−1
i (qi)J

T
ϕi

(qi)
)−1

(A.1)

·
(
J̇ϕi(qi)si + Jϕi(qi)H

−1
i (qi)hi(t)

)

with

hi = H i(qi)ei(ri)−Ci(qi, q̇i)si (A.2)
+ KRiri −Ci(qi, q̇ri)si −KDRisi.

Because of the assumption of the boundedness
of q̇ and xi, ∆λi must be bounded as well
from (A.1). Furthermore, if ‖xi‖ → 0 then

∆λi → 0. Finally, note that from (13) we can
aditionally conclude that ṡi is bounded and
tends to zero.

B Proof of Theorem 1

We just have to find domains Di for which each
Vi(xi) in (19) satisfies V̇i(xi) < 0 in Di − {0}.
Note that Vi(xi) is positive definite in Rni . In
doing so, one can prove that xi → 0 for all i.
Then, Lemma 1 can be employed to analyze the
behavior of the different error signals. Based on
the discussion given in Appendix A, we define
each domain Di as in (20), where xmaxi is chosen
xmaxi ≤ ηiαi

1+
√

ni
. See Appendix I of Gudiño Lau

et al. (2004) for details. Note that xmaxi cannot
be done arbitrarily large. In Di one can define

µ1i
4
= max
‖xi‖≤xmaxi

‖Ci(qi, q̇ri)‖ (B.1)

µ2i
4= max
‖xi‖≤xmaxi

‖Ci(qi, si + q̇ri)‖ (B.2)

µ3i
4= max
‖xi‖≤xmaxi

‖Ci(qi, si + 2q̇ri)‖ (B.3)

µ4i
4
= Mei(xmaxi)λHi (B.4)

λDi
4
= λmax(Di) (B.5)

c2i =
∥∥∥∥
[
Jϕi(qi)H

−1
i (qi)J

T
ϕi

(qi)
]−1

∥∥∥∥ (B.6)

‖J̇ϕi(qi)‖ ≤ α1i‖si‖+ α2i‖q̇ri‖ (B.7)
‖q̇ri‖ ≤ vmi + ki ηi +

√
ni xmaxi (B.8)

σHi = max
∀qi∈Rni

λmax(H−1
i ) (B.9)

γ1i
4
= c1ic2i (α1ixmaxi + α2iα3i) (B.10)
+ c1i

2c2iσHi (µ3i + λmaxi(KDRi))

γ2i
4
= c1i

2c2iσHiλmaxi(KRi) (B.11)
+ c1i

2c2iMei

‖rT
i JT

ϕi
(qi)∆λi‖ ≤ γ1i‖si‖‖ri‖ (B.12)

+ γ2i‖ri‖2,

where α1i, α2i are positive constants, Mei is given
in (18), ‖q̇di‖ ≤ vmi ∀ t, and ηi small enough.
The next step is to compute the derivative of the
Lyapunov function candidate in (19) along (13)
and (16), which can be simplified to

V̇i(xi) ≤− λmin(KRi)‖si‖2 − kdi
λhi
‖ri‖2 (B.13)

+ λmax(KRi)‖ri‖2 + γ2i‖ri‖2

+ µ1i‖si‖2 + µ2i‖ri‖2

6
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+ (λDi + µ3i + µ4i + γ1i) ‖si‖‖ri‖

from (B.1)–(B.12), since we are only interested
in the behavior of V̇i(xi) for xi in Di. Consider
λmin(KRi) in (24) and kdi in (25), so that

V̇i(xi) ≤− δi‖xi‖2. (B.14)

Then, one concludes that xi → 0. Now, from
definition of ri one has directly lim

t→∞zi = 0 and

lim
t→∞ żi = 0. Furthermore, one has ‖xi‖ ≤ xmaxi

and thus ‖q̃i‖ ≤ ηi (from the discussion in Ap-
pendix I of Gudiño Lau et al. (2004)). Thus,
from Lemma 1, a) and b), we get lim

t→∞∆ṗi = 0,

lim
t→∞∆pi = 0, lim

t→∞
˙̃qi = 0, lim

t→∞ q̃i = 0. To ap-

plied c) of Lemma 1, we only need to show that q̇i

is bounded. This is certainly the case because ˙̃qi

and q̇di are bounded. Thus we get lim
t→∞∆λi = 0.

Finally, the stability of the whole system can be

proven using V =
l∑

i=1
Vi(xi).
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